HARDWARE ARCHITECTURE FOR GLOBAL MOTION ESTIMATION FOR MPEG-4
ADVANCED SIMPLE PROFILE

Ching-Yeh Chen, Shao-Yi Chien, Wei-Min Chao, Yu-Wen Huang, and Liang-Gee Chen

DSP/IC Design Lab
Graduate Institute of Electronics Engineering and Department of Electrical Engineering
National Taiwan University
1, Sec. 4, Roosevelt Rd., Taipei, Taiwan

ABSTRACT

Global motion estimation and compensation (GME/GMC) is a new
and important coding tool in MPEG-4 Advanced Simple Profile
(ASP). The coding gain of GME/GMC is 1-1.6 dB compared to
that without GMC. However, because of the irregular memory ac-
cess and huge memory bandwidth of GME/GMC, few hardware
architectures have been proposed. In this paper, we proposed an
algorithm which can save 87.27% memory bandwidth compared
to that of the original algorithm. By the proposed arrangement
of memory, the impact of the irregular memory access is reduced,
and four neighboring pixels, which are used for the interpolation
of GMC, can be accessed in one cycle. Finally, we also proposed
a hardware architecture for GME in MPEG-4 ASP@LS5. The total
gate count is 131K, at 100MHz and the internal memory size is
about 10.8Kb. It is reasonable to be integrated into MPEG-4 ASP
encoders.

1. INTRODUCTION

In video coding standards, MPEG-4 Advanced Simple Profile (ASP)
[1] undoubtedly is a powerful video coding standard. It can save
50% bit-rate compared to MPEG-4 Simple Profile(SP). This is be-
cause that several advanced motion compensation tools such as
quarter-pixel motion estimation and compensation(QME/QMC),
global motion estimation and compensation(GME/GMC), and B-
frame are included in MPEG-4 ASP. In a video sequence, all mo-
tions are composed of individual object motion and the motion
of background, camera motion. In MPEG-4 ASP, QME/QMC is
adopted to compensate the individual object motion and GME/GMC
is employed to compensate the camera motion.

Since GMC becomes a new and important coding tool, many
global motion estimation algorithms have been proposed. They
can be simply classified into three types: feature-point based[2],
differential technique[3], and frame matching algorithms[4]. In
feature-point based algorithms, some feature points are selected
to represent the whole frame. And by motion vectors of feature
points, global motion parameters are estimated. The Taylor series
is applied to expand a criterion function and further approaches
to the global motion parameters in the differential method. Frame
matching matches the whole frame with the candidate global mo-
tion parameters to select the optimal one. Obviously, frame match-
ing and differential method have large computation complexity,
and feature-point based algorithm cannot get accurate global mo-
tion parameters.

0-7803-8251-X/04/$17.00 ©2004 IEEE

IT - 301

Besides global motion estimation algorithms, global motion
model is also an important factor to describe the camera motion.
Panning, zooming, and rotation are three major camera motions.
There are many global motion models to be used to describe the
camera motion. MPEG-4 ASP supports four global motion mod-
els, translation, isotropic, affine, and perspective models. Among
of them, the affine model is usually used, which is

x = MmoZ + M1y + me ()

’y, = msx + maqy =+ ms, (2)

where (z, y) is the position of a pixel in the current frame, (z',y")
is the position of the corresponding pixel in the reference frame,
and (momimamsamams) are global motion parameters. mo, .4
are scaling factors, and m1, ms are rotation factors, and mz, ms
are translation factors.

GME not only has a large computation complexity, but also
needs a very large memory bandwidth because of many iterations
of GME. Moreover, since GME supports the deformation of scal-
ing and rotation, the irregular memory access of GME is neces-
sary, and it becomes a very difficult problem for hardware imple-
mentation. Up to now, there are almost no algorithms suitable for
hardware implementation. In this paper, we overcame the above-
mentioned problems. The global motion estimation algorithm in
MPEG-4 Verification Model(VM) is adopted and analyzed. Ac-
cording to our analysis, we effectively reduced computation com-
plexity and saved 87.27% memory bandwidth of the GME algo-
rithm. We also provided a solution for irregular memory access
and memory access of interpolation. Finally, a hardware archi-
tecture for GME in MPEG-4 ASP is proposed. The structure of
this paper is as follows. In Sec. 2, we introduce the GME al-
gorithm and show our analysis including computation complexity
and memory bandwidth. Based on the analysis, the optimized al-
gorithm is also proposed. Next, a hardware architecture for GME
is proposed in Sec. 3. And a conclusion is given in Sec. 4.

2. GLOBAL MOTION ESTIMATION ALGORITHM IN
MPEG-4 VM AND THE PROPOSED ALGORITHM

This section would introduce the global motion estimation algo-
rithm and its analysis. Based on the analysis, we proposed a GME
algorithm for hardware implementation.

The flowchart of GME in MPEG-4 is shown in Fig. 1. There
are three parts, 3-tap filter, Initial Matching, and Gradient De-
scent in this algorithm. It is applied on a three-level pyramid and

ISCAS 2004

Initial
Matching

Gradient

Down Down
sample sample

Low Pass Low Pass
Filter Filter

Gradient
 E— Descent

Down Down
sample sample
No
Low Pass Low Pass
Filter Filter

Gradient
Descent

Current frame Reference frame

Fig. 1. The flowchart of GME algorithm in VM.

3-tap filter is used for this propose. At the top level, the predictive
translation vector is estimated in the Initial Matching. After Ini-
tial Matching, the global motion parameters are calculated by the
Levenberg-Marquardt iterative minimization in Gradient Descent,
which is an iterative method. Therefore, the iterative process does
not finish until it converges or the number of iteration is maximum
at each level.

2.1. Gradient Descent

In Gradient Descent, the method is Levenberg-Marquardt iterative
minimization. Global motion parameters are estimated by mini-
mizing the mean square error, E ,

1 .

E=5 D le@P, 3)
ieN

e(i) = I(@,y) = I'@"y), “)

where (x,y) is the position of pixel i, I(x,y) is the luminance
of pixel i in the current frame, (x’,y’) is the corresponding posi-
tion of pixel i in the reference frame, I(z’,%’) is the luminance
of the corresponding pixel, N is the total number of effective pix-
els, whose errors are smaller than the error threshold. The error
threshold is used to excluded those pixels which result in the top
20% of the distribution of |e(%)|. The iterative procedure is shown
as follows.

My = My + A7'B, ®)
M = (moml....mn_2mn—l)T7 (6)

where M, are global motion parameters at iteration t, Aisann X n
matrix, B is an n X 1 matrix, n is the number of global motion
parameters. The coefficients of the matrix A and B are given by

Ay = Z de(i) Oe(i) e

8mk 8mj ’

Bi=3 —e(iy 249 ®)

omy,
iEN k

RD curve

PSNR yid

NoGMC -~ Translation -~ lsottopic ~— — Affine —-~— Persprective "

03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33
Mbits / sec. (framesize 7202576, 30 fos)

Fig. 2. The RD curve of no GMC, and GMC with translation,
isotropic, affine and perspective model.

The Gradient Descent starts after Initial Matching at the top level
of the pyramid, and repeats at the subsequent levels. The process
would iterate until the change of each parameters is small enough
or the number of iteration is above 32.

2.2. GME Performance and Analysis

In this section, the performance and memory bandwidth of GME
are analyzed in MPEG-4 ASP. According to the analysis, global
motion model could be selected for hardware implementation. In
Fig. 2, the rate-distortion curves without and with various global
motion models are shown. The test sequence is Fight, whose frame
size is 720x576 with 300 frames. There is no B-frame, and search-
ing range is -64 - 63.75 with QME/QMC. The coding gain is 1
dB at low bit rate (1Mbps, frame size 720x576, 30 fps) and the
gain is 1.6 dB at high bit rate (3Mbps, frame size 720x576, 30 fps)
compared to that without GMC. Because translation model cannot
deal with camera scaling and rotation, the performance of transla-
tion model is lower 0.2 dB than others. Perspective model is too
sensitive to have a stable performance. The isotropic and affine
models have the similar performances, but affine model is more
complicated than isotropic model. For this reason, the isotropic
model is a better choice. Besides, global motion information also
supports high level video signal processing, such as video segmen-
tation, global motion descriptor in MPEG-7, and scene change de-
tection. Therefore, GME should be included in the implementation
of MPEG-4 ASP encoder.

Fig. 3 shows the memory bandwidth and run-time profile of
GME with isotropic model in frame size 720x576, 30 fps. The
memory bandwidth of GME is 908 MB/sec in the average case
and 1439 MB/sec in the worst case. That is, how to effectively
reduce memory bandwidth of GME is an important thing for hard-
ware implementation. Moreover, GME with isotropic model takes
17% computation time in MPEG-4 ASP, and the run-time profile
shows that the major computation complexity is Gradient Descent.
According to the analysis, the hardware implementation of GME
is necessary.

2.3. Proposed Algorithm and Simulation Result

In the above-mentioned analysis, the huge memory bandwidth of
GME results from the iterations of Gradient Descent. The number
of iteration is 32 in the worst case at each level. In the average

IT- 302

Memory Bandwidth Run-time Profile
Function (MB/sec) (ms)
Original | Proposed Original Proposed

3-tap Filter & Subsample 14.82 14.82 14% 7.5%
Initial Mathcing 379.8 12.66 9.9% 1.5%
Gradient Descent (average case) 513.6 103.5 88.1% 87.7%
Gradient Descent (worst case) 1044.15 155.7

Total (average/ worst) 908 /1439 131/183.2 830520 155700

Fig. 3. Memory bandwidth and run-time profile of original and
proposed GME algorithm with isotropic model.

‘ GME Contorller

Tnitial global Jlnoﬁon vector

| |
L2 L2
3-tap Filter » i
& Initial Local Gradient | |
Subsample Matching Memory Descent Sprite Point
' '
Current Subsample Reference Current
Frame Frame Frame Frame

Off-Chip Frame Memory ‘

Fig. 4. Hardware architecture of GME.

case, there are also 17 iterations at each level. However, impor-
tant improvements have been estimated in the first several itera-
tions. There are few improvements in the later iterations. There-
fore, the prediction, the previous global motion vector, is applied
to reduce the number of iteration. And the maximum of the num-
ber of iteration is set as five. In order to avoid the problem of error
propagation, the initial global motion vector is set as the identity
matrix, and Initial Matching would be executed once in each 30
frames. The number of error histogram bins, which are used to
calculate the error threshold, is also reduced from 256 to 9 because
of the consideration of on-chip memory size. By these methods,
the memory bandwidth is saved 87.27% in the worst case, and the
PSNR only drops 0.04 dB. In the proposed GME algorithm, the
memory bandwidth is 183.2 MB/sec in the worst case and 131
MB/sec in the average case. At the same time, the runtime is also
speeded up five times.

3. PROPOSED HARDWARE ARCHITECTURE

In this section, based on the proposed GME algorithm, a hard-
ware architecture for GME in MPEG-4 ASP is proposed, in Fig.
4. There are four major components, GME controller, 3-tap filter
& Subsample, Initial Matching, and Gradient Descent with local
memory. An off-chip frame memory is required in this architecture
to store the reference and current frames. GME controller controls
other modules and decides which module takes action. Each mod-
ule is described in detailed in the following subsections.

3.1. 3-tap filter & Subsample

3-tap filter and frame downsampling of GME algorithm are imple-
mented in this module. 3-tap filter can be decomposed to two sep-
arated filters, vertical and horizontal filters. The data is filtered by
horizontal filter and subsampled before the vertical filter. Because
of the vertical filter, two delay lines are required to store tempo-
rary data after horizontal filter. In general cases, the delay line is
implemented by dual ports RAM. However, because the data rate

Current Control Signal
Reference

Ref Memory Location

—> Controller

i

il Basic Vector

Local Memory Bank 1

Local Memory Bank 2
Reference x4| Local Memory Bank 3
Local Memory Bank 4

Matrix
Element

Floating Matrix
Processor

~— Sprite Point

Error
Histogram

Error Threshold

l Sprite Points

Fig. 5. Hardware architecture of Gradient Descent and Local
Memory.

of vertical filter is only half of the horizontal filter, the single port
RAM is enough to be used to implement the delay line. After ver-
tical filter, the data are filtered and outputted to the off-chip RAMs.

3.2. Initial Matching

Since Initial Matching is executed once in each 30 frames, one pro-
cessing element is sufficient. The architecture of Initial Matching
is similar to other conventional motion estimation architectures.
The absolute difference accumulator accumulates the total error of
the whole frame for each motion vector. The searching range is
-8 - 7 at the top level. Besides the absolute difference accumula-
tor, there is an error histogram which is used to calculate the error
threshold.

3.3. Gradient Descent

The detailed architecture of Gradient Descent is shown in Fig. 5.
Controller generates the address of the current pixel and calculates
the corresponding pixel in the reference frame according to global
motion parameters at the last iteration. The corresponding pixel
is usually not an integer pixel because of the scaling and rotation
factors. Therefore, the luminance of the reference pixel is interpo-
lated in Basic Vector. At the same time, the related differential data
are generated. The distribution of errors between the current and
reference pixels is estimated in Error Histogram, and then the error
threshold is estimated. The elements of matrix A and B are esti-
mated and accumulated in Matrix Element. Because the variance
and magnitude of the matrix element are very large, a two stage ac-
cumulator is applied. In the first stage, a fixed-point accumulator is
used to accumulate the matrix element. When the partial result of
the first stage is larger than the accumulated threshold, a floating-
point accumulator is adopted to accumulate the partial results of
the first stage in the second stage. After finishing the processing
of the accumulation, the inverse matrix A~' and matrix multipli-
cation A~!B are calculated in Floating Matrix Processor. There
are an adder, a subtractor, a multiplier and a multi-cycle-shift-and-
subtract divider in Floating Matrix Processor. Sprite point checks
if the global motion parameters converge or not and calculates the
reference points for GMC mode in MPEG-4 ASP .

IT- 303

Current Frame (irregular scan

Reference Frame (regular scan)

(a) (b)

Reference Frame (External RAM) Reference Frame(Local Memory)

aofar]az]as]aa]as[a6[a7] o [r0]C1]a2]c3]ad]cs[As]cT]
B0 |B1|B2 B3 |B4 |B5|B6 |B7
Co|C1|C2|C3|C4|C5|C6|CT
DO |D1 (D2 |D3|D4|D5 |D6 | D7

Meml‘BOlDlIBZID3IB4IDSIB6ID7‘

Mem2 [Co]a1]c2[a3]ca]as]cs[a7]

Mcm3‘DOIBI]m]m]m]};s]ns]m‘
(d)

(O]

Fig. 6. The relationship between current frame, reference frame,
and local memory. (a)The scan order and sections in reference
frame. (b)The corresponding scan order and region of each section
in current frame. (c) The arrangement of reference data in external
memory. (d)The arrangement of reference data in Local Memory.

3.4. Local Memory

In GME algorithm, the irregular memory access and the interpola-
tion of GMC are necessary. The former results in the difficulty of
memory access, the latter results in huge memory bandwidth be-
cause it has to access four neighboring pixels in one cycle. In tra-
ditional cases such as motion estimation, the data in Local Mem-
ory is loaded based on the current data. Because of the irregular
memory access, this method cannot be applied. Fig. 6 (a) and (b)
show the proposed scan orders of reference and current frames, re-
spectively. Because the irregular memory access is required in the
reference frame, the proposed scan order of the reference frame
is regular to simplify the memory access, and that of the current
frame is irregular. By this way, not only the impact of irregular
memory access can be reduced, but also the data in the reference
frame can be as reused as possible. Fig. 6 (c) and (d) show the
relationship of external and local memory. Because of the inter-
polation of GMC, the reference data are allocated into the Local
Memory in the interleaved way. There are four dual port RAMs
in Local Memory. By proposed arrangement of local memory, we
can access four neighboring pixels in one cycle. The flow is as
follows. The reference frame is segmented into several sections,
and the data of each section are loaded in Local Memory line by
line. According to the range of each section, there is a certain
corresponding region in the current frame. All pixels in the corre-
sponding region of each section are calculated at the same sched-
ule. After all pixels in the corresponding region of the section have
been calculated, the process could deal with the next section.

3.5. Hardware Simulation Results

In Fig. 7, the hardware implementation of proposed GME archi-
tecture is shown. The target specification is MPEG-4 ASP@LS5,
that is, the frame size of input frame is 720x576 with 30 fps. And
the target operating frequency is 100MHz. The hardware is im-
plemented and simulated with Verilog-HDL and synthesized with
SYNOPSYS Design Compiler. ARTISAN 0.18um cell library is
adopted to design hardware. The total gate count is about 131K
and the internal memory size is about 10.8Kb. It is reasonable
to be integrated into MPEG-4 ASP encoders. Compared with

Module Gate Count Internal Memory
3-tap Filter & Subsample 1144 5760 b
Initial Mathcing 3718 0b
Sprite Point 3348 0ob
Gradient Descent

Basic vector 2215 0b
Matrix Element 72911 0b
Error Histogram 2370 0b
Controller 18921 0b
Floating Matrix Processor 26308 0b
Local Memory 0 5120 b
Total gate count 130935 10880 b
SPM 66116 30880 b

Fig. 7. The results of GME hardware implementation in MPEG-4
ASP@LS (frame size 720x576, 30frames/sec.) and comparison.

the other GME hardware architecture, SPM[5], whose target is
MPEG-4@(L2, L3), the gate count is 66K and internal memory is
31Kb with AVANT! 0.35um cell library. Although the gate count
of the proposed architecture is two times that of SPM, the memory
size is much smaller, and the processing capability is much higher.

4. CONCLUSION

In MPEG-4 ASP, global motion estimation and compensation is
an important coding tool. The coding gain of GME/GMC is 1
dB at low bit rate (1Mbps, frame size 720x576, 30 fps), and the
gain is 1.6 dB at high bit rate (3Mbps, frame size 720x576, 30
fps) compared to that without GMC. However, there are few hard-
ware architectures. In this paper, we overcame difficult problems
of GME/GMC for hardware implementation, irregular memory ac-
cess and huge memory bandwidth. The memory bandwidth is
saved 87.27% by skipping the redundant computation. And an
interleaved arrangement of local memory is adopted to reduce the
memory access of interpolation. A hardware architecture for GME
in MPEG-4 ASP@LS is also proposed. The gate count is 131K
and the internal memory size is about 10.8Kb. It is reasonable to
be integrated into MPEG-4 ASP encoders.

5. REFERENCES

[1] MPEG Video Group, AMENDMENT 4: Streaming Video Pro-
file, ISO/IEC JTC 1/SC 29/WG11 N3904, 2001.

[2] A. Smolic, T. Sikora, and J.-R. Ohm, “Long-term global mo-
tion estimation and its application for sprite coding, content
description, and segmentation,” [EEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 9, no. 8, pp.
1227-1242, Dec. 1999.

[3] MPEG Video Group, The MPEG-4 Video Standard Verifi-
cation Model version 18.0, ISO/IEC JTC 1/SC 29/WGl11
N3908, 2001.

[4] D. Adolph and R. Buschmann, “1.15Mbit/s coding of video
signals including global motion compensation,” Signal Pro-
cessing: Image Communication, vol. 3, no. 2-3, pp. 259-274,
June 1991.

[5] S.Y. Chien, C.Y. Chen, WM. Chao, Y.W. Huang, and L.G.
Chen, “Analysis and hardware architecture for global motion
estimation in mpeg-4 advanced simple profile,” in Proc. of
International Symposium on Circuits and Systems 2003, May
2003, vol. 2, pp. 720-723.

IT - 304

	footer1:

